Superrigid Subgroups of Solvable Lie Groups

نویسنده

  • DAVE WITTE
چکیده

Let Γ be a discrete subgroup of a simply connected, solvable Lie group G, such that AdG Γ has the same Zariski closure as AdG. If α : Γ → GLn(R) is any finite-dimensional representation of Γ, we show that α virtually extends to a continuous representation σ of G. Furthermore, the image of σ is contained in the Zariski closure of the image of α. When Γ is not discrete, the same conclusions are true if we make the additional assumption that the closure of [Γ,Γ] is a finite-index subgroup of [G,G] ∩ Γ (and Γ is closed and α is continuous).

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Superrigid Subgroups and Syndetic Hulls in Solvable Lie Groups

It is not difficult to see that every group homomorphism from Z to R extends to a homomorphism from R to R. We discuss other examples of discrete subgroups Γ of connected Lie groups G, such that the homomorphisms defined on Γ can (“virtually”) be extended to homomorphisms defined on all of G. For the case where G is solvable, we give a simple proof that Γ has this property if it is Zariski dens...

متن کامل

Solvable Lie algebras with $N(R_n,m,r)$ nilradical

In this paper, we classify the indecomposable non-nilpotent solvable Lie algebras with $N(R_n,m,r)$ nilradical,by using the derivation algebra and the automorphism group of $N(R_n,m,r)$.We also prove that these solvable Lie algebras are complete and unique, up to isomorphism.

متن کامل

Infra-Solvmanifolds and Rigidity of Subgroups in Solvable Linear Algebraic Groups

We give a new proof that compact infra-solvmanifolds with isomorphic fundamental groups are smoothly diffeomorphic. More generally, we prove rigidity results for manifolds which are constructed using affine actions of virtually polycyclic groups on solvable Lie groups. Our results are derived from rigidity properties of subgroups in solvable linear algebraic groups.

متن کامل

Lie rank in groups of finite Morley rank with solvable local subgroups

We prove a general dichotomy theorem for groups of finite Morley rank with solvable local subgroups and of Prüfer p-rank at least 2, leading either to some p-strong embedding, or to the Prüfer p-rank being exactly 2. 2000 Mathematics Subject Classification: Primary 20F11; Secondary 20G07, 03C60.

متن کامل

On Low-Dimensional Solvmanifolds

In this note we want to study compact homogeneous spaces G/Γ, where G is a connected and simply-connected Lie group and Γ a discrete subgroup in G. It is well known that the existence of such a Γ implies the unimodularity of the Lie group G. Recall that a Lie group G is called unimodular if for all X ∈ g holds tr adX = 0, where g denotes the Lie algebra of G. If we further demand G/Γ to be symp...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1996